letter

Thermally activated deformation of polymers. Comments on a paper by Zhu and Zhu

Dear Sir

We have some reservations about the formulations and ideas presented in a paper by Zhu and Zhu¹. These are discussed below.

(1) If V_a is the volume involved in an activation event (presumably the difference between the volume of the activated state and that of the normal state), $V_a\tau$ (τ is the applied shear stress) is not the work done by τ during the process of activation and hence the free energy of activation ΔG will not be reduced by that amount. This is due to the fact that a shear stress will not do any work unless there is a corresponding shear strain involved. Let this strain be γ_a (a tensorial component corresponding to τ) and let it be uniform within V_a . Then ΔG is reduced by $V_a \gamma_a \tau$ during the activation process. The product $V_a\gamma_a$ is the activation shear strain volume Ω_a . If γ_a is not uniform, a spatial integration is needed and if Ω_n varies with τ an integration with respect to τ is needed as discussed before^{2,3}. Now experimentally only Ω ₂ can be evaluated from a change of stress with strain rate. V_a can be estimated only by assuming a γ_a or vice versa.

(2) Zhu and Zhu^1 assumed that the shear strain produced by each activation event is:

$$
\gamma_{\rm p} = \beta_2 \frac{V_{\rm a}}{V_{\rm m}} \times \frac{\lambda}{\lambda_1} \tag{1}
$$

where λ/λ_1 is the shear strain produced in V_a after the completion of the activation event, V_m is the volume of the molecular chain and β_2 is a factor used to convert the local strain to the system strain, namely, the number of activation events within the molecular chain per unit time interval. Since V_a should be Ω_a or $V_a\gamma_a$, this assumption is really:

$$
\gamma_{\rm p} = \beta_2 \frac{V_{\rm a} \gamma_{\rm a}}{V_{\rm m}} \times \frac{\lambda}{\lambda_1} \tag{2}
$$

which, when combined with their equation (2), gives the following strain rate:

$$
\dot{\gamma}_{\rm p} = \gamma_{\rm p} v_{\rm r} = \beta_1 \beta_2 \left(\frac{kT}{h}\right) \left(\frac{V_{\rm a} \gamma_{\rm a}}{V_{\rm m}}\right) \left(\frac{\lambda}{\lambda_1}\right)
$$

$$
\exp\left(-\frac{\Delta G}{kT}\right) \sinh\left(\frac{\Omega_{\rm a} \tau}{kT}\right) \tag{3}
$$

The minus sign in front of ΔG is missing in their equation (4); their V_a has been replaced by Ω _a which was assumed constant in order to obtain the hyperbolic sine function. Then they assumed a value of 2 for $\beta_1\beta_2\lambda/\lambda_1$. The justification was that the rate equation will not be affected much whether the value 2 is 0.2 or 20. Unfortunately the activation entropy calculation depends directly on that assumption. For example, a factor of 10 increase in the pre-exponential reduces the activation entropy by $R \ln(10)$ per mole where R is the gas constant.

(3) In deriving their equations (12) and (13) they assumed ΔH , V_a and ΔS to be constants (not varying with either temperature or strain rate). However, their Figures 4, 5 and 6 show clearly that these quantities vary with both temperature and strain rate. However, if expressed properly², these quantities do not have to be assumed constant in order to evaluate them.

(4) While their equation (14) was derived by Ferry⁴ from the WLF equation except for a sign in the denominator:

$$
\Delta H_{\rm m} = \frac{2.303RC_1C_2T^2}{(T - T_{\rm g} + C_2)^2} \tag{4}
$$

their equation (15) was their own creation. They used the idea that $T_g-C₂$ is a thermodynamic transition temperature so that:

$$
\Delta S_{\rm m} = \Delta H_{\rm m}/(T_{\rm g} - C_2) \tag{5}
$$

at this temperature. In this case since ΔH_{m} approaches infinity so does ΔS_m at $\hat{T} = T_g - C_2$. Furthermore this idea does not give ΔS_m at other temperatures. Their equation $(1\overline{5})$ shows:

$$
\Delta S_{\rm m} = \frac{\Delta H_{\rm m}}{T^2} (T_{\rm g} - C_2) \tag{6}
$$

at other temperatures. This equation requires justification.

(5) The flow of a liquid is homogeneous on the molecular scale but the flow of a solid is inhomogeneous. Shear bands and crazes are clearly visible even by human eyes. To regard the plastic deformation of glassy polymers as a viscous flow of a supercooled melt will not help us understand their differences. In fact Zhu and Zhu do not really have any evidence for this similarity.

Donyau Chiang and James C. M. Li *Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, NY 14627, USA*

REFERENCES

- 1 Zhu, X. X. and Zhu, G. R. *Polymer* 1992, 33, 4968
- 2 Li, J. C. M., Pampillo, C. A. and Davis, L. A. in 'Deformation and Fracture of High Polymers' (Eds H. H. Kausch, J. A. Hassell and R. I. Jaffee), Plenum Press, New York, 1973, pp. 239-258
- 3 Li, *J. C. M. J. AppL Phys.* 1971, 42, 4543
- 4 Ferry, J. D. 'Viscoelastic Properties of Polymers', 3rd Edn, Wiley, New York, 1980, p. 289

0032-3861/94/21/4702-01 © 1994 Butterworth-Heinemann Ltd **4702** POLYMER Volume 35 Number 21 1994